本篇文章给大家谈谈《丰田toyota发动机》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、turbo引擎有什么好处?
- 2、VC-TURBO可变压缩比涡轮增压发动机是从什么时候开始研发的?
- 3、ec-turbo发动机怎么样
- 4、丰田「米勒循环」发动机技术解析:缺少TURBO是硬伤
- 5、CVVT和Turbo的区别和各自的优缺点是什么?!
turbo引擎有什么好处?
涡轮增压的最大优点是它可在不增加发动机排量的基础上,大幅度提高发动机的功率和扭矩。一台发动机装上涡轮增压器后,其输出的最大功率与未装增压器相比,可增加大约40%甚至更多。
1、Turbo是汽车中用的涡轮增压的意思。涡轮增压是一种提高汽车发动机的技术,后来这个词就渐渐的成为性能增强的意思,通常用来比喻性能的加强。
2、涡轮增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩,让车子更有劲。一台发动机装上涡轮增压器后,其最大功率与未装增压器的时候相比可以增加40%甚至更高。这样也就意味着同样一台的发动机在经过增压之后能够产生更大的功率。
3、涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。
4、当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。
VC-TURBO可变压缩比涡轮增压发动机是从什么时候开始研发的?
VC-TURBO可变压缩比涡轮增压发动机在1952年英国内燃机研究协会就开始研究,后来一直都有厂商研究相关的技术,2000年萨博展出SVC发动机震惊业界,但由于技术局限性,还没等解决,萨博就倒闭了,丰田对于可变压缩比发动机这一块一直处于内部研究的阶段,目前对于可变压缩比发动机,只有日产实现了真正意义上的量产。
ec-turbo发动机怎么样
挺好的。
TURBO发动机的特点,需要从这五个方面入手。首先,Turbo技术普及的初衷并不是单纯为了提升车辆性能,核心因素是降低车辆油耗。实现燃油经济性的前提是汽车的正常行驶需要合理的动力输出。本文假设需要100马力(PS),发动机以2.0L排量为标准。
TURBO的三大优势本田涡轮增压动力系统的中文名叫“锐·T动”。具备“进排气双VTC”、“缸内直喷”和“高响应涡轮增压”三大技术特点。
丰田「米勒循环」发动机技术解析:缺少TURBO是硬伤
问题:
丰田阿特金森循环发动机技术水平怎样,双擎动力有哪些技术亮点?
近期有些网友咨询丰田混动汽车的技术与品质问题,在此统一做个总结。
首先丰田使用的内燃机并非标准阿特金森结构,结构特点是功能相当的「米勒循环」;至于错误的命名当然有原因,是规避些什么就不讨论了,不过需要说明两点。
阿特金森循环由英国工程师Atkinson于1882年发明
米勒循环由美国工程师Miller于1947年发明
网络上有些说法称这些技术都是由日系车企创造,显然这是错误的;包括知名度很高的托森差速器(老款普拉多装备),发明者也是美国工程师VernonGleasman。所以日系汽车的成长主要基于借鉴,这不能说是错,但是也不要神话了学习能力并不咋滴的日本主机厂。
米勒循环·优缺点
不论阿特金森还是米勒循环结构,实现的结果都是「压缩比<膨胀比」;这样的描述也许不好理解,因为什么是压缩比呢?——概念为活塞在气缸内,由下止点到上止点扫过的容积与动作叫做压缩,气缸总容积减去扫过的容积剩下的空间叫做燃烧室;气缸总容积与燃烧室容积的比例叫做压缩比,参考下图理解吧。
正常的「奥托循环」发动机的压缩比与膨胀比是相同,什么是膨胀比?所谓的膨胀实际指混合油气燃烧做功后的运动状态,可理解为热能推动活塞从上止点到下止点的动作。
两个止点的间距是不变的,那么活塞压缩的行程,则应当等于膨胀做功时的下行行程;两者完全相同就是奥托循环了,那么究竟什么是米勒循环呢?其实说白了就会再简单不过,两个冲程的行程仍旧是相同的,但是奥托循环可以延时关闭进气门,气门的开合步骤如下。
进气冲程-进气门开·排气门关
压缩冲程-进气门关·排气门关
膨胀冲程-进气门关·排气门关
排气冲程-进气门关·排气门开(实际存在瞬间的两组气门同时打开)
压实关闭气门是在压缩冲程中通过特殊的气门凸轮轴实现,简而言之为活塞从下止点开始上行的时候,奥托循环发动机会直接关闭进气门;但是米勒循环会等待活塞往上运动一定距离后再关闭,那么实际压缩行程就要比活塞上行行程短,但是膨胀冲程还是标准的从上止点到下止点,这就是米勒循环——有什么意义呢?
优点:延时关闭气门且活塞上行,此时就不是进行压缩,而是通过活塞实现像“针筒滋水”一样,把气缸内部的混合油气往外推;部分混合气会被推到进气歧管里,那么在关闭气门后,缸内的混合气是不是就比标准排量的空气燃料比少了呢?
答案就是这样喽,结果则是以更少的混合气燃烧做功,做到标准的膨胀比以实现正常运行;这种设计被认定为节油,不过个人认为只能满足对性能要求极低的用户。
缺点:内燃机做功的基础是燃烧燃油,燃烧的本质是碳氢化合物的氧化还原反应;热能虽然是反应的结果,但是空气中的氧气只是作为催化气体,燃油本身才是“能量”。
所以米勒循环发动机在压缩冲程中,把部分混合气挤回进气歧管,耗油量实际是减少了,但是更少的燃油转化出的热能当然也会更低。这就是此类发动机的最大扭矩都非常差的原因,2.5L排量也只有221N·m,这连中等水平的1.5T-奥托循环发动机都不如。而扭矩低则只有依靠拉升转速实现相对高功率,然而扭矩技术过小,结果这是2.5L-131kw的水平,这倒是算不错的1.5T发动机的标准了。
双擎系统
严格意义上的米勒循环并不适合燃油动力汽车,除非通过高压直喷技术提升蒸发性能与燃效,以高效率增压器实现高氧浓度的富氧燃烧;以这两种方式可以实现相对大的扭矩,参考骁云1.5T-米勒循环机。
最大功率136kw
最大扭矩288N·m(1500~3700rpm)
这台机器驱动接近1.6吨的SUV,能够实现的10秒破百;如果换用丰田2.5L-米勒机,加速能力不会比普通后驱面包车更强。所以NA技术的米勒循环发动机只能用于混合动力汽车,说白了就是依靠电动机的恒扭矩和高转速的特点,补偿内燃机的动力的缺失。
这种设计是合理的,因为电机的转化效率可以超过90%,而内燃机峰值也不过40%;所以以电机作为核心动力元,车辆的综合能耗可以有效的下降。
然而丰田双擎系统使用的ECVT比较尴尬,雷凌卡罗拉的双电机总功率只是50多千瓦,凯美瑞也不过88kw;所谓的ECVT并非传统锥轮钢带的无级变速器,而是集成发电机与驱动电机的“动力系统”,内燃机串联发电机控制一个前进挡,驱动电机当然也只有一个前进挡。
那么问题就很突出了,以双擎凯美瑞为例,去掉发电电机的功率参数后,驱动电机还有多大点呢?很显然是小微型电动汽车的动力标准,电驱系统动力储备无法有效补偿内燃机的不足,最终是综合性能仍旧挺弱;想要让性能不理想的汽车节油,唯一的方式就是温和的驾驶。这就是丰田双擎技术的真实水平,实际价值更适合定位入门级。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
CVVT和Turbo的区别和各自的优缺点是什么?!
CVVT和TURBO完全是两种概念,对发动机的作用也各不相同。
CVVT是英文Continue
Variable
Valve
Timing的缩写,翻译成中文就是连续可变气门正时机构,它是近些年来被逐渐应用于现代轿车上的众多可变气门正时技术中的一种。目的是给不同的发动机工作状况下匹配最佳的气门重叠角(气门正时),当发动机低速小负荷运转时(怠速状态),这时应延迟进气门打开时间,减小气门重叠角,以稳定燃烧状态;当发动机低速大负荷运转时(起步、加速、爬坡),应使进气门打开时间提前,增大气门重叠角,以获得更大的扭矩;当发动机高速大负荷运转时(高速行驶),也应延迟进气门打开时间,减小气门重叠角,从而提高发动机工作效率;当发动机处于中等工况时(中速匀速行驶),CVVT也会相对延迟进气门打开时间,减小气门重叠角,此时的目的是减少燃油消耗,降低污染排放。
CVVT系统包含以下零件:油压控制阀、进气凸轮齿盘、曲轴为止感应器、凸轮位置感应器、油泵、引擎电子控制单元(ECU)。
TURBO是涡轮增压。涡轮增压实际上是一台空气增压机,通过压缩空气来增加进气量。他是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮由带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,起之增压进入气缸。当发动机转速增快,废气排除速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可燃烧更多的燃料,相应的就可以增加发动机的输出功率。他最大的优点是能在不加大发动机排量的情况下就能较大幅度地提高发动机的马力及扭力。
关于《丰田toyota发动机》的介绍到此就结束了。