本篇文章给大家谈谈《电子控制发动机冷却系统》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、汽车发动机水冷系统到底是怎么回事
- 2、发动机冷却系统?
- 3、发动机冷却系统 的资料
- 4、发动机冷却系统的检测与故障分析有哪些?
汽车发动机水冷系统到底是怎么回事
冷却系统对汽车发动机性能具有重要的影响,发动机冷却水泵已成为国内外的研究热点. 分析了离心式发动机冷却水泵的结构特点与能量特性,总结了制约汽车发动机冷却水泵发展的 关键影响因素. 由于发动机冷却水泵的空间结构受限、工作环境温度高、转速变化大,工作过程 极易发生汽蚀破坏,严重影响发动机冷却水泵及冷却系统的可靠及稳定运行,易出现轴承损坏、水封失效、振动噪声等问题. 从发动机冷却水泵水力性能、汽蚀性能以及可靠性等3 个方面综述 了近年来国内外研究取得的相关成果,对发动机冷却水泵技术研究的发展和趋势进行了展望, 提出未来需要进一步深入研究的内容和方向
随着冷却系统对发动机性能的影响日益显著, 汽车冷却系统关键零部件的热负荷及其可靠性研 究已成为国内外研究的热点. 冷却水泵是汽车发动 机闭式循环冷却系统中输送冷却水的主要部件,其 性能好坏,不仅影响汽车的动力性、经济性,而且影 响整机的寿命长短. 目前,国内外学者针对发动机冷却水泵特殊的 工作环境,在可靠性和汽蚀破坏等制约发动机冷却 水泵发展的关键因素方面展开了深入的研究,取得 了大量相关研究成果. 文中总结发动机冷却水泵的 结构特点,分别从能量性能、汽蚀性能以及可靠性 等3 个方面综述分析国内外研究现状和进展,指出 发动机冷却水泵研究中的不足和还需要进一步深 入研究的领域,为相关人员开展发动机冷却水泵的 研究提供技术参考.
发动机冷却水泵是汽车发动机冷却系统的心 脏,其作用是提高循环系统中冷却液的工作压力, 维持发动机相关部件间的冷却液循环,防止发动机 的运行温度过高. 根据配套要求和工作条件的不 同,发动机冷却水泵结构型式有离心泵、旋涡泵以 及旋转容积泵等,由于受空间尺寸的限制,通常 采用由入水室、叶轮和出水室组成的单级离心泵, 该结构具有外形尺寸小、重量轻、供水量大、结构简 单等特点,是应用最为广泛的一种结构型式. 典型 离心式冷却循环水泵结构如图1 所示,主要由泵体、 叶轮、轴承、水封和带轮等组成.
性能曲线用于表达泵在不同工况下对水流能 量的转换特性,是泵内部流动规律的外在表现. 与 普通离心泵一样,发动机冷却水泵的定速特性曲线 为一定转速下流量与扬程、流量与效率以及流量与 功率的关系曲线,如图 3a 所示. 它可以直观描述发 动机冷却水泵在恒定转速下的运行性能. 但由于发 动机冷却水泵工作时转速是不断变化的,为此还必 须给出水泵的变速特性曲线 发动机 冷却水泵的变速特性曲线主要测绘出不同转速所 对应的流量、扬程和功率曲线,体现了不同转速下 的能量转换特性. 为了更直观反映发动机冷却水泵 的综合性能,有时需把 2 种性能曲线绘制在同一幅 图上表示其各性能参数.
发动机冷却水泵作为冷却系统的“心脏”,工作 环境恶劣,空间极其受限. 为避免大修期内拆装、维 修,水泵的工作寿命应等于或倍数于发动机大修 期. 因此,对于发动机冷却水泵及其组件,如水封、 轴承、泵轴和叶轮等可靠性要求极高,需要实现机 泵同寿命. 但是,装配结构的高度紧凑,使得发动 机冷却水泵中广泛采用轴连轴承代替离心泵中常 见的轴和轴承组合,极易造成泵轴强度不够而断 裂. 转速的不断变化,使得冷却风扇与水泵叶轮产 生的轴向力亦随之变动,泵轴与支承间的游隙存在 将会增大噪声和振动,对泵的运行性能及水封工作 带来不利影响. 尤其是发动机冷却水泵在高温环境 下工作,轴封的工作条件恶劣极易出现密封失效.
与普通离心泵相比,发动机冷却水泵由于受温 度、工况、转速变化的影响,更容易发生汽蚀. 汽蚀 发生时伴随有振动和噪声,泵的扬程、效率等性能 急速下降,长期在汽蚀工况下运行,叶轮将受到气 泡溃灭时的强力冲击而侵蚀,甚至穿孔损坏. 发动 机冷却水泵叶片表面的蜂窝状坑点、蜗壳隔舌附近 的凹坑都是常见的汽蚀破坏为了进一步优化提高发动机冷却水泵的水力 性能,OSMAN 等运用遗传算法对提高水泵设计 效率做了研究,他们首次将遗传算法应用于发动机 冷却水泵多参数设计的问题. 利用正 交分析法对汽车水泵叶轮进行优化设计,改善了叶 轮的水力性能. 由于发动机冷却水泵广泛采用半开 式、后弯叶轮,刘对前弯与后弯叶轮进行 了数值模拟,发现后弯叶片内的低速回流区域少于 前弯叶片,后弯叶片的损失小.研究发现 半开式与闭式叶轮相比,闭式叶轮具有圆盘摩擦损 失且随着比转速的减小而急剧增大,同时半开式叶 轮控制好与泵壳之间的侧向间隙
目前,发动机冷却水泵的效率比普通离心泵低 10% ~20%,而国内发动机冷却水泵的效率与国外 相比也存在明显差距,效率低7% ~15%. 为了提 高发动机冷却水泵的效率,许多学者在性能预测和 内部流动等方面开展了大量研究工作,并在此基础 上对发动机冷却水泵的水力性能进行了优化设计 与结构改进. 性能预测是能量特性研究的重要组成部分, CFD 数值模拟方法可预测扬程及效率,大大减轻了 设计人员的工作量,显著提高了设计效率和准确程 度. 应用数值模拟方法预测了发动机冷 却水泵的性能,预测值比实验值稍高但总体趋势一 致.对3 个典型的发动机冷却水泵模 型进行了数值计算,求出各个部件的水力损失,对 损失系数进行回归分析,得到了各个部件的水力损 失和泵中结构参数之间的关系( 损失系数与雷诺 数、比转数之间的数学关系) ,建立了各部件水力损 失模型和性能预测模型
发动机冷却系统?
冷却系统的功用是使发动机在所有工况下都保持在适当的温度范围内。冷却系统既要防止发动机过热,也要防止冬季发动机过冷。在冷态下的发动机启动之后,冷却系统还要保证发动机迅速升温,尽快达到正常的工作温度。
在发动机工作期间,最高燃烧温度可高达2500度;即使在怠速或中等转速下,燃烧室的平均温度也在1000度以上。因此,与高温燃气接触的发动机零件被强烈的加热。若不及时将这些高温零件上的过多热量散发掉,则将出现下述各种不良现象:
1.润滑油将由于高温而变质,使发动机零件之间不能保持正常的油膜.
2.受然零件由于热膨胀过大而破正常的间隙.
3.温度过高促使金属材料的力学性能下降,以致承受不了正常的负载.
但冷却会消耗一部分有用的热量,因此必须适度。如果发动机冷却过度,不仅浪费了热量,而且还会引起下述各种不良的后果:
1.由于缸壁温度过低会使燃油蒸发不良,燃烧品质变坏;
2.由于润滑油粘度加大,同样不能形成良好的润滑油膜,使摩擦损失加大;
3.由于温度低而增加气缸的腐蚀磨损.
发动机冷却系统 的资料
1 概述
随着发动机采用更加紧凑的设计和具有更大的比功率,发动机产生的废热密度也随之明显增大。一些关键区域,如排气门周围散热问题需优先考虑,冷却系统即便出现小的故障也可能在这样的区域造成灾难性的后果。发动机冷却系统的散热能力一般应满足发动机满负荷时的散热需求,因为此时发动机产生的热量最大。然而,在部分负荷时,冷却系统会发生功率损失,水泵所提供的冷却液流量超过所需的流量。我们希望发动机冷启动时间尽可能短。因为发动机怠速时排放的污染物较多,油耗也大。冷却系统的结构对发动机的冷启动时间有较大的影响。
2 现代发动机冷却系统的特点
传统冷却系统的作用是可靠地保护发动机,而还应具有改善燃料经济性和降低排放的作用。为此,现代冷却系统要综合考虑下面的因素:发动机内部的摩擦损失;冷却系统水泵的功率;燃烧边界条件,如燃烧室温度、充量密度、充量温度。
先进的冷却系统采用系统化、模块化设计方法,统筹考虑每项影响因素,使冷却系统既保证发动机正常工作,又提高发动机效率和减少排放。
2.1 温度设定点
发动机工作温度的极限值取决于排气门周围区域最高温度。最理想的情况是按金属温度而不是冷却液温度控制冷却系统,这样才能更好地保护发动机。由于冷却系统设定的冷却温度是以满负荷时最大散热率为基础,因此,发动机和冷却系统在部分负荷时处于不太理想状态,如市区行驶和低速行驶时,会产生高油耗和排放。
通过改变冷却液温度设定点可改善发动机和冷却系统在部分负荷时的性能。根据排气门周围区域温度极限值,可升高或降低冷却液或金属温度设定点。升高或降低温度点都各有特点,这取决于希望达到的目的。
2.2 提高温度设定点
提高工作温度设定点是一种比较受欢迎的方法。提高温度有许多优点,它直接影响发动机损耗和冷却系统的效果以及发动机排放物的形成。提高工作温度将提高发动机机油温度,降低发动机摩擦磨损,降低发动机燃油消耗。
研究表明,发动机工作温度对摩擦损失有很大影响。将冷却液排出温度提高到150℃,使气缸温度升高到195℃,油耗则下降4%-6%。将冷却液温度保持在90-115℃范围内,使发动机机油的最高温度为140℃,则油耗在部分负荷时下降10%。
提高工作温度也明显影响冷却系统的效能。提高冷却液或金属温度会改善发动机和散热气热传递传递的效果,降低冷却液的流速,减小水泵的额定功率,从而降低发动机的功率消耗。此外,可采用不同的方式,进一步减小冷却液的流速。
2.3 降低温度设定点
降低冷却系统的工作温度可提高发动机充气效率,降低进气温度。这对燃烧过程、燃油效率及排放有利。降低温度设定点可以节省发动机运行成本,提高部件使用寿命。
研究表明,若气缸盖温度降低到50℃,点火提前角可提前3℃A而不发生爆震,充气效率提高2%,发动机工作特性改善,有助于优化压缩比和参数选择,取得更好的燃油效率和排放性能。
2.4 精确冷却系统
精确冷却系统主要体现在冷却水套的结构设计与冷却液流速的设计中。在精确冷却系统中,热关键区,如排气门周围,冷却液有较大的流速,热传递效率高,冷却液的温度梯度变化小。这样的效果来自缩小这些地方冷却液通道的横截面,提高流速,减少流量。
精确冷却系统的设计关键在于确定冷却水套的尺寸,选择匹配的冷却水泵,保证系统的散热能力能够满足低速大负荷时关键区域工作温度的需求。
发动机冷却液流速的变化范围相当大,从怠速时的1 m/s到最大功率时的5 m/s。故应将冷却水套和冷却系统整体考虑,相互补充,发挥最大潜力。
研究表明,采用精确冷却系统,在发动机整个工作转速范围,冷却液流量可下降40%。对气缸盖上冷却水套的精确设计,可使普通冷却道的流速从1.4m/s提高到4 m/s,大大提高气缸盖传热性,将气缸盖的金属温度降低到60℃。
2.5 分流式冷却系统
分流式冷却系统为另外一种冷却系统。在这种冷却系统中,气缸盖和气缸体由各自的液流回路冷却,气缸盖和气缸体具有不同的温度。分流式的冷却系统具备特有的优势,可使发动机各部分在最优的温度设定点工作。冷却系统的整体效率达到最大。每个冷却回路将在不同冷却温度设定点或流速下工作,创造理想的发动机温度分布。
理想的发动机热工作状态是气缸盖温度较低而气缸体温度相对较高。气缸盖温度较低可提高充气效率,增大进气量。温度低且进气量大可促进完全燃烧,降低CO,HC和NOx的形成,也提高输出功率。较高气缸体温度会减小摩擦损失,直接改善燃油效率,间接地降低缸内峰值压力和温度。分流式冷却系统可使缸盖和缸体温度相差100℃。气缸温度可高达150℃,而缸盖温度可降低50℃,减少缸体摩擦损失,降低油耗。较高的缸体温度使油耗降低4%-6%,在部分负荷时HC降低20%-35%。节气门全开时,缸盖和缸体温度设定值可调到50℃和90℃,从整体上改善燃油消耗、功率输出和排放。
2.6 可控式发动机冷却系统
传统的发动机冷却系统属于被动式的,结构简单或成本低。可控式冷却系统可弥补目前冷却系统的不足。现在冷却系统的设计标准是解决满负荷时的散热问题,因而部分负荷时过大的散热能力将导致发动机功率浪费。这对轻型车辆来说尤为明显,这些车辆大多数时间都在市区内部分负荷下行驶,只利用部分发动机功率,引起冷却系统较高损耗。为解决发动机在特殊情况下过热的问题,现在的冷却系统体积较大,导致冷却效率降低,增大了冷却系统的功率需求,延长了发动机暖机时间。可控式发动机冷却系统一般包括传感器、执行器和电控模块。可控式冷却系统能够根据发动机工作状况调整冷却量,降低发动机功率损耗。在可控式冷却系统中,执行器为冷却水泵和节温器,一般由电动水泵和液流控制阀组成,可根据要求调整冷却量。温度传感器为系统的一部分,可迅速把发动机的热状态传给控制器。
可控式装置,如电动水泵,可将冷却系温度设定点从90℃提高到110℃,节省2%-5%的燃油,CO减少20%,HC减少10%。稳定状态时,金属温度比传统冷却系统的高10℃,可控式冷却系统具有较快的响应能力,可将冷却温度保持在设定点的±2℃范围。从110℃下降到100℃只需2 s。发动机暖机时间减少到200s,冷却系统工作范围更贴近工作极限区域,能够缩小发动机冷却温度和金属温度的波动范围,减少循环热负荷造成的金属疲劳,延长部件寿命。
3 结论
前面介绍的几种先进冷却系统具有改善冷却系统性能的潜力,能够提高燃油经济性和排放性能。冷却系统的能控性是改善冷却系统的关键,能控性表示对发动机结构保护的关键参数,如金属温度、冷却液温度和机油温度等能够控制,确保发动机在安全限度范围内工作。冷却系统能够对不同工况作出快速反应,最大地节省燃料、降低排放,而不影响发动机整体性能。
从设计和使用性能角度看,分流式冷却与精密冷却相结合具有很好的发展前景,既能提供理想的发动机保护,又能提高燃油经济性和排放性。这种结构有利于形成发动机理想的温度分布。直接向气缸盖排气门周围供给冷却液,减少了气缸盖温度变化,使缸盖温度分布更加均匀,也能将机油和缸体温度保持在设计的工作范围,具有较低的摩擦损失和污染排放量。■
冷却系统的功能及维护保养方法如下:
1、冷却系统的功能,就是将发动机零件吸收的一部分热量带走,保证柴油发动机各零件维持在正常的温度范围内。
2、冷却水应是不含溶解盐的软水,如清洁的河水、雨水等。不要用井水、泉水或海水等硬水,以防产生水垢,引起发动机散热不良,气缸过热等问题发生。
3、用漏斗将冷却水加入水箱时,应当防止水飞溅到发动机与散热器上,防止散热片和机体上积尘、弄脏,影响冷却效果。
4、若因发动机缺水而引起温度过高时,不能马上加水,应使发动机慢速运转10—15分钟,等温度稍降低后,在发动机不息火的情况下慢慢加入冷却水。
5、冬季,水箱内应加热水。启动后应慢速运转至水温超过40度时才能工作。工作结束后,必须放尽冷却水。
6、要定期清除水箱内的水垢,对风冷发动机的散热片要经常擦洗污泥、脏垢。散热片不可损坏,若损坏后要及时更换,以免影响散热效果。
发动机冷却系统的检测与故障分析有哪些?
发动机冷却系统主要故障与维修 冷却系统在工作一定时间后,内部必然会形成各种污垢。污垢种类因使用条件和保养等因素不同也有许多差异。对于大部分车辆,平时使用水,仅在冬季低温情况下使用防冻液,这种情况下易出现以水锈和垢质为主的污物;对于长期使用防冻液的车辆,会出现以垢质和凝胶为主的污物。 污物的其他成分包括:①退化形成的酸质。例如失效的防腐蚀剂,氧化的乙烯或丙烯乙二醇等。②重金属。③硬水杂质。④物理杂质。例如外来材料(灰尘、砂粒等)和沉淀的添加剂等。⑤电解物。
冷却系统主要故障
发动机冷却系统的主要故障有三种:
(1)发动机水温过高甚至开锅。
(2)发动机水温过低。
(3)冷却系统泄漏。
发动机过热的原因有多种,最常见的原因是由于冷却系统内部水垢、水锈及凝胶等污物积聚,堵塞了水道,冷却系统散热效果降低所致的结果。以往排除这类故障常用的方法是拆卸水箱进行更换,但事实证明许多车的情况并没有因此得到改善。
发动机冷却系统泄漏的形式主要有水箱漏水、上下水管渗漏及缸垫漏水等形式。
冷却系统主要故障的免解体解决方案
1.高温故障的解决方法
对于发动机过热的故障,尤其是由于污垢过多引起的问题,可以采用冷却系统清洗剂配合专用设备进行处理解决。
(1)清洗剂种类的选择
选择清洗剂时,有三项原则以供参考:
①对于大部分沉淀和腐蚀,用略带酸性的清洗剂效果较好。
②如果凝胶不硬,可以用碱性或无腐蚀性清洁剂清洗(酸性更好,不过碱性清洗剂即可达到效果)。
③对于冷却系统的油性杂质,要用酸性清洗剂来完成这一任务。
综合考虑上述三个原则,加上中国国内汽车冷却系统中的污垢主要以沉淀、油性杂质及锈垢为主,使用酸性的清洗剂产品(例如美国威力狮公司推出的60119#冷却系统高效清洗剂),才能全面满足目前中国市场的要求。目前市场中大多数的冷却系统清洗剂是碱性的,因此它只能够适应一小部分汽车的需要。
(2)处理方法
将设备与车子连接好后,把产品加入到发动机冷却系统中,确保达到正常工作温度的情况下工作大约30min,然后利用设备彻底更换旧防冻液。
2.渗漏故障的解决
(1)情况分析
水箱渗漏的形状主要有两种,一种是颗粒状,一种是条状。上下水管渗漏在排除损坏后,主要是龟裂老化;缸垫则主要是由于各种原因引起的串水,水进入油路等。
(2)水箱渗漏的处理方法
目前中国市场中有两大类制止水箱渗漏的产品。从工作原理上讲,一种是堵漏剂,一种是止漏剂。它们的区别是什么呢?
堵漏剂产品是一种类似于填充剂性质的化学物质,能够将渗漏部位全部堵住。而止漏剂产品则是一些植物纤维,利用表面张力将渗漏处堵住,然后在固化剂的作用下将之固定在渗漏位置,保证以后不再渗漏。对于水箱渗漏可以直接加入水箱止漏剂产品,切忌加入堵漏剂产品。
关于《电子控制发动机冷却系统》的介绍到此就结束了。