1. 涡扇发动机轴承
F135发动机是基于F-22的F119发动机的核心机和主要结构研制的。F135发动机加力推力超过18吨,推重比超过10。
F135是由由美国普拉特·惠特尼公司研制的加力涡扇发动机,最大推力超过18吨(4万磅),F135发动机是基于F-22的F119发动机的核心机和主要结构研制的。由于海军陆战队与英国皇家海军预计采用的F-35B必须能够垂直起降,因此F135也可以加上向下弯折的三轴承旋转喷管。
F135使用了F119的核心机,配合高效的6级高压压气机,1级高压涡轮和高效的风扇(由一个2级的低压涡轮驱动)。F135采用了BAE系统公司的全权数字式发动机控制系统(FADEC),为了提高发动机的可靠性和可保障性,F135大量采用外场可替换部件(LRC),其零部件数量比F119减少了大约40%。按照计划,F135有三个不同的型号,F135一PW一100将作为F-35A空军型的动力系统;F135一PW一400将作为F-35C海军舰载型的动力;而F135一PW一600将作为F-35B海军陆战队短距起飞/垂直降落型的动力。
2. 涡扇发动机轴承位置
WS-15全称涡扇15“峨眉” 涡扇发动机,是为我国第五代战斗机而研制的小涵道比推力矢量涡扇发动机,主要用于第五代双发隐身战斗机歼-20。由606所、624所、614所、410厂、430厂和113厂等单位专家组织研制,在2006年5月首次台架运转试车成功。
加力推力:161865-181373N
中间推力:10522daN
加力耗油率:1.98kg/daN/h
中间耗油率:0.67kg/daN/h
推重比:9.7-10.87
空气流量:138kg/s
涵道比:0.25
总增压比:30.5
涡轮进口温度:1850K
最大直径:1.02m
长度:5.05m
质量:1633.7kg。
按照飞机任务要求,“峨眉”航空发动机在循环参数选择上采用较高的涡轮进口温度、中等总增压比和比较低的涵道比。采用的新技术主要有损伤容限和高效率的宽弦叶片、三维粘性叶轮机设计方法、整体叶盘结构的风扇和压气机、单晶气冷涡轮叶片、粉末冶金涡轮盘、刷式封严、树脂基复合材料外涵机匣、整体加力燃烧室设计、陶瓷基复合材料喷管调节片、三元矢量喷管和具有故障诊断和状态监控能力的双余度全权数字电子控制系统。发动机由10个单元体组成。
结构系统
进气口:
进气口采用全钛结构环形进气机匣,带18个可变弯度的进口导流叶片,其前部为径向支板,后部为可调部分, 前缘则以来自高压压气机的空气防冰。
风扇:
风扇采用3级轴流式宽弦实心钛合金风扇叶片,第1级风扇叶片采用宽弦设计,风扇叶片可拆换,带有中间凸台。第2和第3级风扇为用线性摩擦焊技术焊接成的整体叶盘结构。风扇机匣是整环结构,风扇转子作成可拆卸的,即第2级盘前、后均带鼓环,分别与第1、3级盘连接。增压比约为4.01。3级静子和转子均为三维流设计。
高压压气机:
高压压气机采用6级轴流设计,增压比7.16。前3级转子为整体叶盘结构,是在锻坯上用电化学加工出来的。后3级转子叶片通过燕尾形榫头与盘连接。前3级定子叶片材料为钛合金。转子为电子束焊和螺栓连接的混合结构,采用三维流技术设计。定子部分进口导流叶片和第1、2级静子叶片为可调,前3级盘用高温钛合金制成,第2级盘前、后均带鼓环,分别与第1、3级盘连接。第 4~ 6级盘由镍基高温合金粉末冶金制成,用电子束焊焊为一体,用长螺栓前与第3级盘连在一起。钛合金整体中介机匣和对开的压气机机匣,设有孔探仪窥孔,用以观察转子和其他部件。
燃烧室:
燃烧室采用短环燃烧室,火焰筒采用激光打孔的多孔结构进行冷却,火焰筒为整体双层浮壁结构,外层为整体环形壳体,采用双通路喷嘴,燃油经22个双锥喷嘴和22个小涡流杯喷出并雾化,实现无烟燃烧,具有均匀的出口温度场。
高压涡轮:
高压涡轮采用单级轴流式,采用国内第三代单晶涡轮叶片材料、隔热涂层和先进冷却结构。单级轴流式,不带冠,采用气膜冷却加冲击冷却方式。转子叶片和导向器叶片材料均为国内第三代单晶材料,叶身上有物理气相沉积的隔热涂层。机匣内衬扇形段通过冷却空气进行叶尖间隙控制。转子叶片和导向器可单独更换。涡轮部件采用单元体结构设计 ,由涡轮转子、导向器、涡轮机匣、涡轮后机匣和轴承机匣等五个组件组成。
低压涡轮:
低压涡轮采用单级轴流式,与高压转子对转,空心气冷转子叶片,带冠。转子叶片均可单独更换,导向器叶片可分段更换。仍然采用了低压涡轮导向器。低压涡轮轮盘中心开有大孔,以便安装高压转子的后轴承。
加力燃烧室:
加力燃烧室采用整体式,采用径向火焰稳定器,火焰稳定器由1圈“V”形中心火焰稳定器与36根径向稳定器组成。径向稳定器用风扇空气冷却,加力筒体采用阻燃钛合金以减轻重量,筒体内作有隔热套筒,两者间的缝隙中流过外涵空气对筒体进行冷却,中心环形火焰稳定器沿圆周做成12段,可以自由膨胀,整套火焰稳定器可以在发动机装在飞机上的条件下进行更换。
尾喷管:
尾喷管采用全程可调收敛、扩张三元矢量喷管—在俯仰方向可作±10°偏转。从+10°到-10°的行程中只需1.5秒钟。用于调整飞机俯仰飞行姿态。装有先进的陶瓷基复合材料的尾喷管调节片。
控制系统:
控制系统采用推力和矢量由双余度全权限数字电子控制系统控制(FADEC),按风扇转速和核心机压比调节发动机工作,有故障隔离功能。
3. 涡扇发动机轴承型号
尾喷管又叫排气喷管,简称喷管。
其主要作用是将由涡轮流出的、仍有一定能量(势能、热能)的燃气膨胀加速,以较大的速度(一般为550~600米/秒)排出发动机,用以产生推力。
战机尾喷管大致有两种分类方法:1,收敛和收敛扩张;2,喷口面积可调和不可调。
不可调节的收敛形尾喷管(固定喷口的亚声速尾喷管):结构最简单,重量最轻,广泛应用于亚声速及低超声速飞机上的不带加力燃烧室的涡喷发动机,及涡轮后燃气焓降较小的涡桨和涡扇发动机。(如WP5甲的尾喷管)
可调节的收敛形尾喷管:能使发动机在各种工况下都获得良好的性能,带加力的发动机必须采用可调节的尾喷管,保证在加力状态下相应地加大喷口。有的发动机通过改变喷口面积来改变工况。其主要类型有:多鱼鳞片式,双鱼鳞片式,移动尾椎体式,气动调节式。(鱼鳞片又叫调节片,多鱼鳞片式参考WP6,WP7)
可调节的收敛扩张形尾喷管:超声速飞机用(无论有无加力),其燃气的膨胀比很大,用此型尾喷管减小燃气不完全膨胀的推力损失。有移动尾椎体式和多调节片式等。(如AL-31f)
超声速飞机还用过引射式尾喷管,用引气气流调节主流的膨胀比。
以上尾喷管是直流式的,燃气向后排出。
还有偏转燃气流的,如“飞马”发动机,带有折流板,用于短距/垂直起降,类似的还有F-135发动机,3轴承旋转喷管,用于STOVL。
除此之外,还有用于减速,缩短降落时的滑跑距离,或飞行中机动,减速的反推力装置,主要是将燃气流偏转向前方,产生反推力。有蛤壳形门式,戽斗式门,外涵反推装置。
4. 涡扇发动机轴承更换
1、缺点不同
机械增压:涡轮增压技术其中最明显的就是“滞后响应”,即由于叶轮的惯性作用对油门骤时变化反应迟缓,即使经过改良后的反应时间也要1.7秒,使发动机延迟增加或减少输出功率。这样如果你急加速,就会感觉发动机使不上劲。 但随着技术的进步,涡轮延迟在一定程度上得到改善
涡轮增压:加速效果不是很明显,与自然吸气引擎差别不大。会损失发动机部分动能,机械增压靠皮带带动,归根到底驱动力还是引擎。高转速时会产生大量的摩擦,影响到转速的提高,噪音大。
2、结构不同
机械增压:机械增压器采用皮带与引擎曲轴皮带盘连接,利用引擎转速来带动机械增压器内部叶片,以产生增压空气送入引擎进气歧管内,整体结构相当简单,工作温度界于70℃-100℃。
涡轮增压:涡轮室进气口与排气歧管相连,排气口接在排气管上;增压器进气口与空气滤清器管道相连,排气口接在进气歧管上。涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。
机械增压
涡轮增压
3、原理不同
机械增压:利用发动机本身的动力,来带动一个压气机,进行增压。增压器会消耗发动机的动力,它的转速随发动机转速而改变,不会出现增压滞后的情况,发动机低速运转时效果极好,但它受发动机转速限制,发动机在高速状态下它会增压不足。
涡轮增压:利用发动机产生的废气推动排气管中的涡扇带动进气管中的涡扇转动,进行间接增压,不消耗发动机的动力。涡轮增压器转速极高,所增压力也比机械增压器高数倍。但由于涡扇有惯性,中间轴承也有相当大的阻力,废气突然增多时涡扇转速不会再同时提高,这也就是涡轮迟滞。
5. 涡扇发动机轴承支架连接
飞机的发动机不用加水的,补充航空煤油、发动机润滑油、液压油等即可。
航空煤油(Jet fuel)是一种无色的透明液体。对飞机发动机来说,通常情况下人们使用的汽油不安全,容易挥发;柴油黏度太大,不适合航空发动机使用。而航空煤油密度适宜,燃烧性能好;低温流动性好,飞机的运行环境在万米高空上,气温较低,可以满足低温地区和高空飞行对流动性的要求;洁净度高,含硫量低,对飞机部件腐蚀小。飞机通常采取压力加油的方式来进行加油,如果乘客坐在机翼旁的时候看到有辆大车停在了飞机侧面,那正是在给飞机加油。
6. 涡扇发动机轴承怎么换
答:拆卸时必须按序进行,拆卸顺序如下:
(1)拆卸前先作好压气机壳与涡轮壳之间、涡轮壳与轴承体之间相互对应位置的记号。
(2)松开压气机壳压板螺钉,并拆下壳体,拆卸时允许用木锤、铜棒均匀敲打壳体四周,拆下壳体后检查压气机叶轮是\否损坏。
(3)在祸轮转轴顶端与压气机叶轮、轴端螺母之间作好相对应位置记号。在清洗时不得擦掉记号.以免装配时记号不清,破坏动平衡。
(4)松开涡轮壳压板螺栓,拆下涡轮壳(允许用铜棒敲打壳体四周),拆开后,检查壳体表面有无裂纹,涡轮叶片是否损坏。
(5)用扳手夹紧涡轮端头部后,再用另一支扳手松开轴端螺母。
(6)手握叶轮左右扭动向上提取,取下压气机叶轮(不允许用螺丝刀从叶轮背部撬起)。
(7)用木锤轻轻敲打压气机轴端,取出涡轮转轴,拆卸后检查轴颈有无烧蚀与磨损状况,以及密封环在环槽内相互位置(正确位置是两环开口错位180度),
(8)取下隔热罩,松开背盘螺栓,取下背盘及O形橡胶圈。检查O形橡胶圈是否损坏,不得将O形橡胶圈粘上机
(9)取下挡油板及止推轴承板,检查止推轴承板上油槽、油孔是否堵塞,止推轴承板有无压伤或压裂。
(10)取下止推片,间隔套和轴承挡圈,检查有无烧蚀。
(11)取出浮动轴承,检查轴承、轴承体内、外回表面的磨损状况,及密封环的磨损情况,清除轴承体回油腔积炭。
(12)拆下轴封套、密封环,检查密封环开口是否错开180度,以及检查环槽磨损情况和密封环弹力减弱情况。
组装时按拆卸相反顺序进行,组装时应注意:
(1)仔细清洗油污,清除积炭和零、部件上的毛刺。
(2)对准拆卸时所做复原装配记号,装配复原。
(3)两个密封环开口应错开180度.
(4)装配后各运动件应转动灵活,不允许有丝毫发卡,装 配间隙应符合规定要求
7. 轴流涡扇发动机
AI-222-25是一种较先进的双转子低涵道比涡扇发动机,长1960毫米,直径640毫米,基本型号重量440千克,AI-222-25F加力型重量560千克。该发动机具有轴流式2级低压压气机和8级高压压气机,采用环形燃烧室,具有1级高压涡轮和1级低压涡轮。最大起飞非推力2520千克,最大加力推力4200千克,推重比5.68(无加力)/7.5(加力),燃料消耗率 0.64千克/千克推力-小时。